Q.
if f(x)=n→∞lim(x2+(x+1)ntanπx2+(x+1)nsinx), then
1563
187
Continuity and Differentiability
Report Error
Solution:
f(0)=0+10+1×0=0 x→0−limf(x)=x→0−limx→∞limx2+(x+1)ntanπx2+(x+1)nsinx =x→0−limx2tanπx2 (If x→0−,x+1<1) =π∴LHL=f(0) ∴f(x) is not continuous at x=0 hence not differentiable also.