We have; f(x)=⎩⎨⎧x2−xx2−x=1,−(x2−x)(x2−x)=−1,1,−1, if x<0 or x>1 if 0<x<1 if x=0 if x=1 ={1,−1, if if x≤0 or x>10<x≤1
Now, x→0−lim1=1 and x→0+limf(x)=x→0lim−1=−1
Clearly, x→0−limf(x)=x→0+limf(x).
So, f(x) is not continuous at x=0.
It can be easily seen that it is not continuous at x=1 also.