Given that, f(x)=cot−1(1−3x23x−x3)
and g(x)=cos−1(1+x21−x2)
Put x=tanθ in f(x), we get f(x)=cot−1(1−3tan2θ3tanθ−tan3θ) ⇒f(x)=2π−3tan−1x
Again put x=tanθ in g(x), we get g(x)=cos−1(1+tan2θ1−tan2θ)
Again put x=tanθ in g(x), we get g(x)=cos−1(1+tan2θ1−tan2θ) g(x)=2tan−1x ∴x→alimg(x)−g(a)f(x)−f(a) =x→alim2tan−1x−2tan−1a(2π−3tan−1x)−2π+3tan−1a =x→alim2(tan−1a−tan−1x)−3(tan−1a−tan−1x)=−23