Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If f ( x )=| cos x - sin x |, then f '((π/4)) is equal to
Q. If
f
(
x
)
=
∣
cos
x
−
sin
x
∣
, then
f
′
(
4
π
)
is equal to
1601
231
Limits and Derivatives
Report Error
A
2
61%
B
−
2
17%
C
0
22%
D
None of these
0%
Solution:
We have,
f
(
x
)
=
∣
cos
x
−
sin
x
∣
⇒
f
(
x
)
=
{
cos
x
−
sin
x
,
f
or
0
<
x
≤
4
π
sin
x
−
cos
x
,
f
or
4
π
<
x
<
2
π
Clearly,
L
f
′
(
4
π
)
=
{
d
x
d
(
cos
x
−
sin
x
)
}
a
t
x
=
4
π
=
(
−
sin
x
−
cos
x
)
x
−
4
π
=
2
and
R
f
′
(
4
π
)
=
{
d
x
d
(
sin
x
−
cos
x
)
}
at
x
=
4
π
=
(
cos
x
+
sin
x
)
x
=
4
π
=
2
∵
L
f
′
(
4
π
)
=
R
f
′
(
4
π
)
∴
f
′
(
4
π
)
doesn't exist.