Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $f ( x )=|\cos x -\sin x |$, then $f '\left(\frac{\pi}{4}\right)$ is equal to

Limits and Derivatives

Solution:

We have, $f(x)=|\cos x-\sin x|$
$\Rightarrow f(x) = \begin{cases} \cos x-\sin x, for 0< x \leq \frac{\pi}{4} \\ \sin x-\cos x, for \frac{\pi}{4}< x < \frac{\pi}{2} \end{cases}$
Clearly, $Lf'\left(\frac{\pi}{4}\right) =\left\{\frac{ d }{ dx }(\cos x -\sin x )\right\}_{ at\, x =\frac{\pi}{4}}$ $=(-\sin x -\cos x )_{ x -\frac{\pi}{4}}=\sqrt{2}$
and $Rf'\left(\frac{\pi}{4}\right)=\left\{\frac{ d }{ dx }(\sin x-\cos x)\right\}_{\text {at } x=\frac{\pi}{4}}$ $=(\cos x+\sin x)_{x=\frac{\pi}{4}}=\sqrt{2}$
$\because Lf'\left(\frac{\pi}{4}\right) \neq Rf'\left(\frac{\pi}{4}\right) \therefore f '\left(\frac{\pi}{4}\right)$ doesn't exist.