Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If f(x)=| beginmatrix x-3 2x2-18 3x3-81 x-5 2x2-50 4x3-500 1 2 3 endmatrix |, then f(1).f(3)+f(3).f(5)+f(5).f(1) is equal to:
Q. If
f
(
x
)
=
∣
∣
x
−
3
x
−
5
1
2
x
2
−
18
2
x
2
−
50
2
3
x
3
−
81
4
x
3
−
500
3
∣
∣
,
then
f
(
1
)
.
f
(
3
)
+
f
(
3
)
.
f
(
5
)
+
f
(
5
)
.
f
(
1
)
is equal to:
3349
241
KEAM
KEAM 2005
Report Error
A
f
(
1
)
B
f
(
3
)
C
f
(
1
)
+
f
(
3
)
D
f
(
1
)
+
f
(
5
)
E
f
(
1
)
+
f
(
3
)
+
f
(
5
)
Solution:
∵
f
(
1
)
=
∣
∣
−
2
−
4
1
−
16
−
48
2
−
78
496
3
∣
∣
f
(
3
)
=
∣
∣
0
−
2
1
0
−
32
2
0
−
392
3
∣
∣
=
0
and
f
(
5
)
=
∣
∣
2
0
1
32
0
2
294
0
3
∣
∣
=
0
∴
f
(
1
)
.
f
(
3
)
+
f
(
3
)
−
f
(
5
)
+
f
(
5
)
.
f
(
1
)
=
f
(
1
)
.0
+
0
+
f
(
1
)
.0
=
0
=
f
(
3
)