We have, f(x)=∣∣​sinx+sin2x+sin3x3+4sinx1+sinx​sin2x3sinx​sin3x4sinx1​∣∣​ Applying C1​→C1​−C2​−C3​ ,
we get f(x)=∣∣​sinx00​sin2x3sinx​sin3x4sinx1​∣∣​ =3sinx−4sin3x=sin3x ∴∫0π/2​f(x)dx=∫0π/2​sin3xdx =[−3cos3x​]0π/2​ =−31​[cos23π​−cos0]=31​