Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If f(x)=| cos x 1 0 1 2 cos x 1 0 1 2 cos x|, then ∫ limits0π / 2 f(x) d x=
Q. If
f
(
x
)
=
∣
∣
cos
x
1
0
1
2
cos
x
1
0
1
2
cos
x
∣
∣
, then
0
∫
π
/2
f
(
x
)
d
x
=
1729
197
VITEEE
VITEEE 2017
Report Error
A
4
1
B
−
3
1
C
2
1
D
1
Solution:
f
(
x
)
=
∣
∣
cos
x
1
0
1
2
cos
x
1
0
1
2
cos
x
∣
∣
=
cos
x
(
4
cos
2
x
−
1
)
−
1
(
2
cos
2
x
)
+
0
=
4
cos
3
x
−
cos
x
−
2
cos
x
=
4
cos
3
x
−
3
cos
x
=
cos
3
x
∴
0
∫
2
π
f
(
x
)
=
0
∫
2
π
cos
3
x
=
(
3
s
i
n
3
x
)
0
2
π
=
−
3
1