⎩⎨⎧<br/><br/>f(x)=(1+∣sinx∣)a/∣sinx∣,<br/><br/>b<br/><br/>=etan2x/tan3x−6π<x<0,x=0,0<x<6π<br/><br/>
For f(x) to be continuous at x=0
Now, 0limetan2x/tan3x x→0+lim =x→0+lime(2xtan2x×2x)/(3xtan3x×3x) =x→0+lime2/3=e2/3
Since, f(x) is continuous at x=0. ∴ea=e2/3⇒a=32
and b=e2/3