Since f(x) is diff. at x = 1 ∴Ltx→1−x−1f(x)−f(1)=Ltx→1+x−1f(x)−f(1) ∴Ltx→1−x−1ax2−b−1=Ltx→1+x−1∣x∣1−1 ⇒Ltx→1x−1a(x2−1)+a−b−1=Ltx→1x(x−1)1−x....(1) ⇒a(1+1)+Ltx→1x−1a−b−1=−1 ⇒2a+Ltx→1x−1a−b−1=−1 ∴a−b−1=0 ∴ (1) gives −Ltx→1a(x+1)=−1 ⇒2a=−1∴a=−21 ∴−21−b−1=0∴b=−3/2