f(x)=acos(πx)+b ∴f′(x)=−aπsin(πx)
So, f′(21)=π⇒−aπ=π⇒a=−1
Also, 21∫23f(x)dx=π2+1⇒21∫23(acos(πx)+b)dx=π2+1⇒(πasin(πx)+bx)2123=π2+1 ⇒(π−a+23b)−(πa+2b)=π2+1⇒π−2a+b=π2+1
As a=−1⇒b=1.
So, π−12(sin−1a+cos−1b)=π−12(sin−1(−1)+cos−1(1))=π−12(2−π+0)=6.