We have, f(x)=3x3−9x2−27x+15 ⇒f′(x)=9x2−18x−27
For maxima or minima, we put f′(x)=0 ⇒9x2−18x−27=0 ⇒x2−2x−3=0 ⇒(x−3)(x+1)=0⇒x=−1,3
Now, f′′(x)=18x−18
at x=−1,f′′(x)=18(−1)−18=−36<0
So, x=−1, point of maxima ∴ Maximum value of f(x) at x=−1 is f(−1)=3(−1)3−9(−1)2−27(−1)+15 =−3−9+27+15=−12+42=30