Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If f(x)=3x4+4x3-12x2+12, then f(x) is
Q. If
f
(
x
)
=
3
x
4
+
4
x
3
−
12
x
2
+
12
,
then
f
(
x
)
is
2461
176
KEAM
KEAM 2007
Application of Derivatives
Report Error
A
increasing in
(
−
∞
,
−
2
)
and in
(
0
,
1
)
8%
B
increasing in
(
−
2
,
0
)
and in
(
1
,
∞
)
38%
C
decreasing in
(
−
2
,
0
)
and in
(
0
,
1
)
31%
D
decreasing in
(
−
∞
,
−
2
)
and in
(
1
,
∞
)
8%
E
increasing in
(
−
2
,
0
)
and in
(
0
,
1
)
8%
Solution:
∵
f
(
x
)
=
3
x
4
+
4
x
3
−
12
x
2
+
12
f
(
x
)
=
12
x
3
+
12
x
2
−
24
x
=
12
x
(
x
2
+
x
−
2
)
=
12
x
(
x
−
1
)
(
x
+
2
)
From above it is clear that
f
(
x
)
is increasing in
(
−
2
,
0
)
and in
(
1
,
∞
)