Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If f ( x )=3 tan x +(3 a +1) ln | sec x |+( a -3) x is increasing in (0, (π/2)) then minimum integral value of
Q. If
f
(
x
)
=
3
tan
x
+
(
3
a
+
1
)
ln
∣
sec
x
∣
+
(
a
−
3
)
x
is increasing in
(
0
,
2
π
)
then minimum integral value of
256
120
Application of Derivatives
Report Error
A
0
B
1
C
2
D
-1
Solution:
f
′
(
x
)
=
3
sec
2
x
+
(
3
a
+
1
)
tan
x
+
(
a
−
3
)
=
3
tan
2
x
+
3
a
tan
x
+
tan
x
+
a
=
(
3
tan
x
+
1
)
(
tan
x
+
a
)
f
′
(
x
)
>
0∀
x
∈
(
0
,
2
π
)
⇒
tan
x
+
a
>
0∀
x
∈
(
0
,
2
π
)
∴
a
≥
0
∴
minimum integral value of
a
=
0