Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If f(x) = 2 tan-1 x + sin-1 ((2x/1+x2)), x > 1, then f(t) is equal to :
Q. If
f
(
x
)
=
2
tan
−
1
x
+
sin
−
1
(
1
+
x
2
2
x
)
,
x
>
1
, then
f
(
t
)
is equal to :
5957
217
JEE Main
JEE Main 2015
Inverse Trigonometric Functions
Report Error
A
2
π
13%
B
π
59%
C
4
tan
−
1
(
5
)
26%
D
tan
−
1
(
156
65
)
2%
Solution:
f
(
x
)
=
2
tan
−
1
x
+
sin
−
1
(
1
+
x
2
2
x
)
x
>
1
,
f
(
5
)
=
?
We know that
2
tan
−
1
x
=
⎩
⎨
⎧
sin
−
1
(
1
+
x
2
2
x
)
1
≤
x
≤
1
−
π
−
sin
−
1
(
1
+
x
2
2
x
)
x
<
−
1
π
−
sin
−
1
(
1
+
x
2
2
x
)
x
>
1
⇒
f
(
x
)
=
2
tan
−
1
x
+
(
π
−
2
tan
−
1
x
)
⇒
f
(
x
)
=
π
∀
x
>
1
⇒
f
(
5
)
=
π