Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If f(x) = (2- x cos x/2+x cos x) and g(x) = logex ., (x>0) then the value of integral ∫ limits(π/4)-(π/4) g(f(x))dx is :
Q. If
f
(
x
)
=
2
+
x
c
o
s
x
2
−
x
c
o
s
x
and
g
(
x
)
=
lo
g
e
x
.
,
(
x
>
0
)
then the value of integral
−
4
π
∫
4
π
g
(
f
(
x
)
)
d
x
is :
2748
177
JEE Main
JEE Main 2019
Integrals
Report Error
A
lo
g
e
3
20%
B
lo
g
e
2
7%
C
lo
g
e
e
30%
D
lo
g
e
1
43%
Solution:
g
(
f
(
x
)
)
=
ℓ
n
(
f
(
x
)
)
=
ℓ
n
(
2
+
x
.
c
o
s
x
2
−
x
.
c
o
s
x
)
∴
I
=
∫
−
4
π
4
π
ℓ
n
(
2
+
x
c
o
s
x
2
−
x
.
c
o
s
x
)
d
x
=
∫
0
4
π
(
ℓ
n
(
2
+
x
.
c
o
s
x
2
−
x
c
o
s
x
)
+
ℓ
n
(
2
−
x
.
c
o
s
x
2
+
x
.
c
o
s
x
)
)
d
x
=
∫
0
2
π
(
0
)
d
x
=
0
=
lo
g
e
(
1
)