Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If f(x)=1+x+(x2/2)+...+(x100/100), then f'(1) is
Q. If
f
(
x
)
=
1
+
x
+
2
x
2
+
...
+
100
x
100
, then
f
′
(
1
)
is
2145
172
Limits and Derivatives
Report Error
A
100
1
21%
B
100
51%
C
Does not exist
18%
D
0
9%
Solution:
We have,
f
(
x
)
=
1
+
x
+
2
x
2
+
3
x
3
+
...
+
100
x
100
…
(
i
)
Differentiating
(
i
)
w.r.t.
x
, we get
f
′
(
x
)
=
0
+
1
+
2
2
x
+
3
3
x
2
+
...
+
100
100
x
99
=
1
+
x
+
x
2
+
x
3
+
...
+
x
99
∴
f
′
(
1
)
=
1
+
1
+
(
1
)
2
+
(
1
)
3
+
...
+
(
1
)
99
=
100