Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If f(x) = (1 + tan x/1 - tan x) then f' ((π/6) ) =
Q. If
f
(
x
)
=
1
−
t
a
n
x
1
+
t
a
n
x
then
f
′
(
6
π
)
=
2546
251
Limits and Derivatives
Report Error
A
4
+
3
10%
B
4
+
2
3
28%
C
4
(
2
+
3
)
44%
D
(
2
+
3
)
18%
Solution:
If
f
(
x
)
=
1
−
t
a
n
x
1
+
t
a
n
x
Then
f
′
(
x
)
=
(
1
−
t
a
n
x
)
2
d
x
d
(
1
+
t
a
n
x
)
.
(
1
−
t
a
n
x
)
−
(
1
+
t
a
n
x
)
.
d
x
d
(
1
−
t
a
n
x
)
=
(
1
−
t
a
n
x
)
2
(
0
+
s
e
c
2
x
)
(
1
−
t
a
n
x
)
−
(
1
+
t
a
n
x
)
(
0
−
s
e
c
2
x
)
=
1
+
t
a
n
2
x
−
2
t
a
n
x
2
s
e
c
2
x
=
s
e
c
2
x
−
2
t
a
n
x
2
s
e
c
2
x
=
1
−
s
i
n
2
x
2
∴
Where
x
=
6
π
,
f
′
(
6
π
)
=
1
−
s
i
n
3
π
2
=
1
−
2
3
2
=
2
−
3
4
=
4
(
2
+
3
)