For f(x) is continuous at x=2π, we must have limx→2πf(x)=f(2π) ⇒limx→2π(π−2x)21−sinx⋅log(1+π2−4πx+4x2)logsinx=k ⇒limh→04h21−cosh⋅log(1+4h2)logcosh=k ⇒limh→04h21−cosh×logcosh−1(1+cosh−1)× log(1+4h2)4h2×4h2cosh−1=k ⇒−limh→0(4h21−cosh)2×cosh−1log(1+(cosh−1)) ×log(1+4h2)4h2=k ⇒−limh→0(2h2sinh/2)2×cosh−1log(1+(cosh−1)) ×log(1+4h2)4h2=k ⇒−641limh→0(h/2sinh/2)4cosh−1log(1+(cosh−1)) ×log(1+4h2)4h2=k ⇒−641=k⇒k=−641