We have ,x→0−limf(x) =x→0lim{1+∣sinx∣}∣sinx∣a =ex→0lim∣sinx∣⋅∣sinx∣a=ea
and x→0+limf(x)=x→0limetan3xtan2x =ex→0lim2xtan2x⋅tan3x3x×32 =e2/3
For f(x) to be continuous at x=0, we must have x→0−limf(x)=x→0+limf(x) =f(0) ⇒ea=e2/3=b ⇒a=2/3
and b=e2/3