Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If f(x1)-f(x2)=f((x1-x2/1-x2 x2)) for x1, x2 ∈[-1,1], then f(x) is equal to :
Q. If
f
(
x
1
)
−
f
(
x
2
)
=
f
(
1
−
x
2
x
2
x
1
−
x
2
)
for
x
1
,
x
2
∈
[
−
1
,
1
]
, then
f
(
x
)
is equal to :
1731
235
Bihar CECE
Bihar CECE 2003
Report Error
A
tan
−
1
(
1
−
x
)
(
1
+
x
)
B
tan
−
1
(
1
+
x
)
(
1
−
x
)
C
lo
g
(
1
−
x
)
(
1
+
x
)
D
none of these
Solution:
We have,
f
(
x
1
)
−
f
(
x
2
)
=
f
(
1
−
x
1
x
2
x
1
−
x
2
)
Since,
x
1
,
x
2
∈
[
−
1
,
1
]
Let
x
1
=
−
1
and
x
2
=
1
, then
f
(
−
1
)
−
f
(
1
)
=
f
[
1
+
1
−
1
−
1
]
=
f
(
−
1
)
⇒
f
(
1
)
=
0
Now take,
f
(
x
)
=
tan
−
1
(
1
+
x
1
−
x
)
f
(
1
)
=
tan
−
1
(
1
+
1
1
−
1
)
=
tan
−
1
0
=
0
Which is satisfied.