∵f(x) is continuous everywhere ⇒f(x) is continuous at x=0 and x=2 ∴LHL at (x=0)=RHL at (x=0)=f(0) x→0−limf(x)=x→0+limf(x)=2 x→0−lim(1+cosx)=x→0+lim(a−x)=2 ⇒1+1=a−0=2 ⇒a=2
and LHL at (x=2)=RHL at (x=2)=f(2) x→2−limf(x)=x→2+limf(x)=a−2 ⇒x→2−lim(a−x)=x→2+lim(x2−b2)=2−2
or 2−2=22−b2=0 ⇒b2=4 ∴a2+b2=4+4=8