Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If f(x)= begincases 0, text where x=(n/n+1), n=1,2,3 ldots . . 1, text else where endcases, then the value of ∫ limits02 f(x) d x is -
Q. If
f
(
x
)
=
{
0
,
1
,
where
x
=
n
+
1
n
,
n
=
1
,
2
,
3
…
..
else where
, then the value of
0
∫
2
f
(
x
)
d
x
is -
178
173
Integrals
Report Error
A
1
B
0
C
2
D
∞
Solution:
0
∫
2
f
(
x
)
d
x
=
0
∫
1/2
1
⋅
d
x
+
1/2
∫
2/3
1
⋅
d
x
+
2/3
∫
3/4
1
⋅
d
x
+
…
..
+
n
n
−
1
∫
n
+
1
n
1.
d
x
+
………
+
1
∫
2
1.
d
x
=
(
2
1
)
+
(
3
2
−
2
1
)
+
(
4
3
−
3
2
)
+
…
.
+
(
n
+
1
n
−
n
n
−
1
)
+
…
.
+
1
=
n
+
1
n
+
…
.
+
1
as
n
→
∞
taking limit
n
→
∞
we get
0
∫
2
f
(
x
)
d
x
=
1
+
1
=
2