Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If f''(x)>0, ∀ x ∈ R, f'(3)=0 and g(x)=f( tan 2 x-2 tan x+4), 0< x< (π/2), then g(x) is increasing in
Q. If
f
′′
(
x
)
>
0
,
∀
x
∈
R
,
f
′
(
3
)
=
0
and
g
(
x
)
=
f
(
tan
2
x
−
2
tan
x
+
4
)
,
0
<
x
<
2
π
, then
g
(
x
)
is increasing in
1428
215
Application of Derivatives
Report Error
A
(
0
,
4
π
)
B
(
6
π
,
3
π
)
C
(
0
,
3
π
)
D
(
4
π
,
2
π
)
Solution:
g
′
(
x
)
=
(
f
′
(
(
tan
x
−
1
)
2
+
3
)
)
2
(
tan
x
−
1
)
sec
2
x
Since
f
′′
(
x
)
>
0
⇒
f
′
(
x
)
is increasing
So,
f
′
(
(
tan
x
−
1
)
2
+
3
)
>
f
′
(
3
)
=
0
∀
x
∈
(
0
,
4
π
)
∪
(
4
π
,
2
π
)
Also,
(
tan
x
−
1
)
>
0
x
∈
(
4
π
,
2
π
)
So,
g
(
x
)
is increasing in
(
4
π
,
2
π
)