Q.
If f(θ)=(secθ+cosecθ)(sinθ+cosθ)−secθcosecθ lies completely between the roots of the quadratic equation (a−2)x2+2ax+a+8=0 for all permissible values of θ, then find the number of integral values of a.
169
89
Complex Numbers and Quadratic Equations
Report Error
Answer: 0001
Solution:
f(θ)=(secθ+cosecθ)(sinθ+cosθ)−secθcosecθ =cosθsinθ+1+1+sinθcosθ−secθcosecθ=2+cosθsinθ+sinθcosθ−secθcosecθ =2+sinθcosθ1−secθcosecθ=2
Let g(x)=(a−2)x2+2ax+a+8 ∴(a−2)g(2)<0 (a−2)(4(a−2)+4a+a+8)<0 ⇒(a−2)(9a)<0⇒a∈(0,2)