Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If f (θ)= min .(|2 x -7|+| x -4|+| x -2- sin θ|), where x , θ ∈ R, then maximum value of f (θ) is
Q. If
f
(
θ
)
=
min
.
(
∣2
x
−
7∣
+
∣
x
−
4∣
+
∣
x
−
2
−
sin
θ
∣
)
, where
x
,
θ
∈
R
, then maximum value of
f
(
θ
)
is
240
142
Relations and Functions - Part 2
Report Error
A
2
B
3
C
4
D
5
Solution:
f
(
θ
)
=
min
.
(
∣2
x
−
7∣
+
∣
x
−
4∣
+
∣
x
−
2
−
sin
θ
∣
)
Let
g
(
x
)
=
∣2
x
−
7∣
+
∣
x
−
4∣
+
∣
x
−
2
−
sin
θ
∣
g
(
x
)
∣
m
i
n
=
g
(
2
7
)
=
2
1
+
2
3
−
sin
θ
=
2
−
sin
θ
=
f
(
θ
)
∴
f
(
θ
)
∣
m
a
x
=
3