f(tanx)=1+(tan)2x2tanx⇒f(x)=1+x22x Now, domain of f(x) is x∈R
For the range of f(x)⇒y=1+x22x⇒yx2−2x+y=0 ∵x∈R∴D≥0 4−4y2≥0⇒y∈[−1,1] is the range
Also, f(−x)=1+(−x)22(−x)=−f(x) ∴f(x) is an odd function f′(x)=(1+x2)2(1+x2)2−2x(2x)=(1+x2)22(1−x2) f′(x) can be positive & negative ∀x∈R ∴f(x) is many-one