Consider, f(t)=∣∣cost2sintsintttt12tt∣∣
Applying R2→R2−R1 and R3→R3−R1, ⇒f(t)=∣∣cost2sint−costsint−costt0012t−1t−1∣∣
By expanding along C2, we get f(t)=−t∣∣2sint−costsint−cost2t−1t−1∣∣ =(−t)[(t−1)(2sint−cost)−(2t−1)(sint−cost)] =(−t)[2sint⋅t−cost⋅t−2sint+cost −2t⋅sint+2t⋅cost+sint−cost] ⇒f(t)=(−t)[t⋅cost−sint] ⇒f(t)=tsint−t2cost ∴t→0limt2f(t)=t→0limt2tsint−t2cost =t→0limtsint−t→0limcost =1−1=0