Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If f: R → R satisfies f (x + y) = f (x) + f (y), for all x, y ∈ R and f (1) = 7, then displaystyle ∑r=1n f(r) is
Q. If
f
:
R
→
R
satisfies
f
(
x
+
y
)
=
f
(
x
)
+
f
(
y
)
, for all
x
,
y
∈
R
and
f
(
1
)
=
7
, then
r
=
1
∑
n
f
(
r
)
is
7199
186
AIEEE
AIEEE 2003
Relations and Functions
Report Error
A
2
7
n
12%
B
2
7
(
n
+
1
)
26%
C
7
n
(
n
+
1
)
21%
D
7
2
n
(
n
+
1
)
41%
Solution:
f
(
1
)
=
7
f
(
1
+
1
)
=
f
(
1
)
+
f
(
1
)
f
(
2
)
=
2
×
7
only
f
(
3
)
=
3
×
7
r
=
1
∑
n
f
(
r
)
=
7
(
1
+
2
+
………
+
n
)
=
7
2
n
(
n
+
1
)
.