f(x)[f(x)6+1]=x f(0)[f(0)6+1]=0⇒f(0)=0
and (f(x))6⋅f′(x)=1−f1(x) ⇒f′(x)[7f(x)6+1]=1⇒f′(x)>0∀x∈R
Hence, f(x) is increasing function ∀x∈R
So there exists an inverse of f(x) such that f−1(0)=0 ⇒x7+x=f−1(x)⇒0∫2(x7+x)dx=8x8+2x2∣∣02=2+1=3
Now, we know that 0∫af(x)dx+0∫f(a)f−1(x)dx=af(a) Hence, ∫03f(x)dx+0∫f(3)f−1(x)dx=3f(3) 0∫3f(x)dx=3f(3)−0∫f(3)(x7+x)dx 0∫3f(x)dx=8f(3)[83−(f(3))7−4f(3)]