∵f(x) is surjective function ∴4−π≤f(x)<2π ∵x2−2x+cos−1α−23π+sin−1β=(x−1)2+cos−1α+sin−1β−23π−1
for surjective cos−1α+sin−1β−23π−1=−1⇒cos−1α+sin−1β=23π ∴cos−1α=π and sin−1β=2π⇒α=−1 and β=1
(A) ∴sin(sin−1(α+β))=0=cos(cos−1(α+β))
(B) sin−1(sin(α−β))=sin−1(sin(−2))=−(π−2)=2−π
But cos−1(cos(α−β))=cos−1(cos(−2))=2
(C) tan−1(tan(α2+β2))=tan−1(tan2)=2−π But cot−1(cot(α2+β2))=cot−1(cot2)=2
(D) tan(tan−1(0))=0 and cot(cot−1(0))=0.