Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If f: R arrow[(-π/4), (π/2)) defined as f ( x )= tan -1( x 4- x 2-(7/4)+ tan -1 α) is surjective function then α is equal to
Q. If
f
:
R
→
[
4
−
π
,
2
π
)
defined as
f
(
x
)
=
tan
−
1
(
x
4
−
x
2
−
4
7
+
tan
−
1
α
)
is surjective function then
α
is equal to
297
129
Inverse Trigonometric Functions
Report Error
A
1
B
tan
1
C
1
+
tan
1
D
1
−
tan
1
Solution:
Θ
f
(
x
)
is surjective
∴
Range of
f
(
x
)
=
[
4
−
π
,
2
π
)
f
(
x
)
=
tan
−
1
(
(
x
2
−
2
1
)
2
−
2
+
tan
−
1
α
)
∴
−
2
+
tan
−
1
α
=
−
1
⇒
tan
−
1
α
=
1
⇒
α
=
tan
1