Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If f: R arrow[-1,2], f ( x )=( x 2+9 bx +17/ ax 3+ x 2+ bx +33) is onto function and f prime( d )= f prime( e )=0. Then
Q. If
f
:
R
→
[
−
1
,
2
]
,
f
(
x
)
=
a
x
3
+
x
2
+
b
x
+
33
x
2
+
9
b
x
+
17
is onto function and
f
′
(
d
)
=
f
′
(
e
)
=
0
. Then
164
95
Conic Sections
Report Error
A
eccentricity of curve
(
d
+
e
)
2
x
2
+
b
+
1
y
2
=
1
can be
2
1
B
eccentricity of curve
(
d
+
e
)
2
x
2
+
b
+
1
y
2
=
1
can be
2
5
C
eccentricity of curve
(
d
+
e
)
2
x
2
+
a
+
1
y
2
=
1
can be
2
3
D
eccentricity of curve
(
d
+
e
)
2
x
2
+
a
+
1
y
2
=
1
can be
2
7
.
Solution:
∵
Domain of function is real number.
∴
a
=
0
Now,
y
=
x
2
+
b
x
+
33
x
2
+
9
b
x
+
17
⇒
(
y
−
1
)
x
2
+
(
b
y
−
9
b
)
x
+
(
33
y
−
17
)
=
0
∵
x
is real
∴
(
b
y
−
9
b
)
2
−
4
(
y
−
1
)
(
33
y
−
17
)
≥
0
∵
Range is
[
−
1
,
2
]
∴
−
1
and 2 should be root
∴
b
=
+
2
and -2
∴
for
b
=
2
⇒
d
=
−
5
,
e
=
7
and
b
=
−
2
⇒
d
=
−
7
,
e
=
+
5