Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If f(n)= displaystyle lim x arrow 0((1+ sin (x/2))(1+ sin (x/22)) ⋅s(1+ sin (x/2n)))(1/x) then displaystyle lim n arrow ∞ f(n)=
Q. If
f
(
n
)
=
x
→
0
lim
(
(
1
+
sin
2
x
)
(
1
+
sin
2
2
x
)
⋯
(
1
+
sin
2
n
x
)
)
x
1
then
n
→
∞
lim
f
(
n
)
=
282
166
Limits and Derivatives
Report Error
A
1
35%
B
e
55%
C
0
7%
D
∞
4%
Solution:
f
(
n
)
=
x
→
0
lim
e
x
1
(
(
1
+
s
i
n
2
x
)
(
1
+
s
i
n
2
2
x
)
⋅
(
1
+
s
i
n
2
n
x
)
−
1
)
=
x
→
0
lim
x
(
1
+
(
sin
2
x
+
sin
2
2
x
+
…
+
sin
2
n
x
)
+
(
sin
2
x
sin
2
2
x
+
…
)
+
…
−
1
)
=
x
→
0
lim
e
(
x
s
i
n
2
x
+
x
s
i
n
(
2
2
x
)
+
…
+
s
i
n
x
(
2
n
x
)
)
=
e
(
2
1
+
2
2
1
+
…
2
n
1
)
∴
n
→
∞
lim
f
(
n
)
=
e
1
−
2
1
1/2
=
e