Q. If $f(n)=\displaystyle\lim _{x \rightarrow 0}\left(\left(1+\sin \frac{x}{2}\right)\left(1+\sin \frac{x}{2^{2}}\right) \cdots\left(1+\sin \frac{x}{2^{n}}\right)\right)^{\frac{1}{x}}$ then $\displaystyle\lim _{n \rightarrow \infty} f(n)=$
Limits and Derivatives
Solution: