Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
if f(n) begincases (1- cos K x/x sin x), textif x≠0 (1/2), textif x=0 endcases is continuous at x=0, then the value of K is
Q. if
f
(
n
)
{
x
s
i
n
x
1
−
c
o
s
K
x
,
2
1
,
if
x
=
0
if x=0
is continuous at x=0, then the value of K is
2068
222
KCET
KCET 2020
Continuity and Differentiability
Report Error
A
±
2
1
31%
B
0
23%
C
±
2
24%
D
±
1
22%
Solution:
Given,
f
is continuous at
x
=
0
.
⇒
x
→
0
lim
f
(
x
)
=
f
(
0
)
⇒
x
→
0
lim
x
sin
x
1
−
cos
K
x
=
2
1
Applying L' Hopitals' rule, we get
x
→
0
lim
sin
x
+
x
cos
x
K
sin
K
x
=
2
1
Again, by L' Hopitals' rule,
x
→
0
lim
(
cos
x
−
x
sin
x
+
cos
x
K
2
cos
K
x
)
=
2
1
⇒
1
−
0
+
1
K
2
=
2
1
⇒
K
=
±
1