Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If F(k)=(1 + s i n (π /2 k))(1 + sin (k - 1) (π /2 k)) (1 + sin (2 k + 1) (π /2 k))(1 + sin â¡ (3 k - 1) (π /2 k)) , then the value of F(1)+F(2)+F(3) is equal to
Q. If
F
(
k
)
=
(
1
+
s
in
2
k
π
)
(
1
+
s
in
(
k
−
1
)
2
k
π
)
(
1
+
s
in
(
2
k
+
1
)
2
k
π
)
(
1
+
s
in
(
3
k
−
1
)
2
k
π
)
, then the value of
F
(
1
)
+
F
(
2
)
+
F
(
3
)
is equal to
1688
221
NTA Abhyas
NTA Abhyas 2020
Report Error
A
16
3
B
4
1
C
16
5
D
16
7
Solution:
F
(
1
)
=
(
1
+
s
in
2
π
)
(
1
+
s
in
0
)
(
1
+
s
in
2
3
π
)
(
1
+
s
inπ
)
=
2
×
1
×
0
×
1
=
0
F
(
2
)
=
(
1
+
s
in
4
π
)
(
1
+
s
in
4
π
)
(
1
+
s
in
4
5
π
)
(
1
+
s
in
4
5
π
)
=
(
1
+
2
1
)
2
(
1
−
2
1
)
2
=
(
1
−
2
1
)
2
=
4
1
F
(
3
)
=
(
1
+
s
in
6
π
)
(
1
+
s
in
3
π
)
(
1
+
s
in
6
7
π
)
(
1
+
s
in
3
4
π
)
=
(
1
+
2
1
)
(
1
+
2
3
)
(
1
−
2
1
)
(
1
−
2
3
)
=
(
1
−
4
1
)
(
1
−
4
3
)
=
4
3
×
4
1
=
16
3
⇒
F
(
1
)
+
F
(
2
)
+
F
(
3
)
=
0
+
4
1
+
16
3
=
16
7