Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $F\left(k\right)=\left(1 + s i n \frac{\pi }{2 k}\right)\left(1 + sin \left(k - 1\right) \frac{\pi }{2 k}\right)$ $\left(1 + sin \left(2 k + 1\right) \frac{\pi }{2 k}\right)\left(1 + sin ⁡ \left(3 k - 1\right) \frac{\pi }{2 k}\right)$ , then the value of $F\left(1\right)+F\left(2\right)+F\left(3\right)$ is equal to

NTA AbhyasNTA Abhyas 2020

Solution:

$F\left(1\right)=\left(1 + s i n \frac{\pi }{2}\right)\left(1 + s i n 0\right)\left(1 + s i n \frac{3 \pi }{2}\right)\left(1 + sin \pi \right)$
$=2\times 1\times 0\times 1=0$
$F\left(2\right)=\left(1 + s i n \frac{\pi }{4}\right)\left(1 + s i n \frac{\pi }{4}\right)\left(1 + s i n \frac{5 \pi }{4}\right)\left(1 + s i n \frac{5 \pi }{4}\right)$
$=\left(1 + \frac{1}{\sqrt{2}}\right)^{2}\left(1 - \frac{1}{\sqrt{2}}\right)^{2}=\left(1 - \frac{1}{2}\right)^{2}=\frac{1}{4}$
$F\left(3\right)=\left(1 + s i n \frac{\pi }{6}\right)\left(1 + s i n \frac{\pi }{3}\right)\left(1 + s i n \frac{7 \pi }{6}\right)\left(1 + s i n \frac{4 \pi }{3}\right)$
$=\left(1 + \frac{1}{2}\right)\left(1 + \frac{\sqrt{3}}{2}\right)\left(1 - \frac{1}{2}\right)\left(1 - \frac{\sqrt{3}}{2}\right)$
$=\left(1 - \frac{1}{4}\right)\left(1 - \frac{3}{4}\right)=\frac{3}{4}\times \frac{1}{4}=\frac{3}{16}$
$\Rightarrow F\left(1\right)+F\left(2\right)+F\left(3\right)=0+\frac{1}{4}+\frac{3}{16}=\frac{7}{16}$