Given, f(0)=2=g(1),g(0)=0 and f(1)=6 f and g are differentiable in (0,1).
Let h(x)=f(x)−2g(x).... (i) h(0)=f(0)−2g(0)=2−0=0
and h(1)=f(1)−2g(1)=6−2(2)=2 h(0)=h(1)=2
Hence, using Rolle's theorem. h′(c)=0, such that c∈(0,1)
Differentiating Eq. (i) at c, we get ⇒f′(c)−2g′(c)=0 ⇒f′(c)=2g′(c)