Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If f (α)=∫ limits1α ( log 10 t/1+t) d t, α>0, then f (e3)+ f (e-3) is equal to :
Q. If
f
(
α
)
=
1
∫
α
1
+
t
l
o
g
10
t
d
t
,
α
>
0
, then
f
(
e
3
)
+
f
(
e
−
3
)
is equal to :
681
126
Report Error
A
9
17%
B
2
9
17%
C
l
o
g
c
(
10
)
9
0%
D
2
l
o
g
c
(
10
)
9
67%
Solution:
f
(
e
3
)
=
∫
1
c
3
ℓ
n
10
(
1
+
t
ℓ
n
t
)
d
t
…
..
(
1
)
f
(
α
)
=
∫
1
α
(
ℓ
n
10
)
(
1
+
t
ℓ
n
t
d
t
t
=
x
1
⇒
x
=
t
1
d
t
=
x
2
−
1
d
x
=
∫
1
α
1
(
ℓ
n
10
(
)
+
x
1
)
−
ℓ
n
x
(
−
x
2
1
)
d
x
f
(
α
)
=
ℓ
n
10
1
∫
1
α
1
x
(
x
+
1
ℓ
n
x
d
x
f
(
e
−
3
)
=
ℓ
n
10
1
∫
1
e
3
t
(
t
+
1
ℓ
n
t
d
t
………
(
2
)
A
dd
(
1
)
&
(
2
)
f
(
e
3
)
+
f
(
e
−
3
)
=
(
ℓ
n
10
1
)
∫
1
c
3
(
1
+
t
ℓ
n
t
[
1
+
t
1
]
d
t
=
(
ℓ
n
10
1
)
∫
1
3
t
ℓ
n
t
d
t
ℓ
n
t
=
r
t
d
t
=
d
r
=
ℓ
n
10
1
∫
0
3
r
d
r
=
(
ℓ
n
10
1
)
(
2
r
2
)
∣
∣
0
3
=
(
l
o
g
10
1
)
(
2
9
)
=
2
l
o
g
c
10
9