Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If f'(2)=6,f'(1)=4, , then underseth→ 0 mathop lim (f(2h+2+h2)-f(2)/f(h-h2+1)-f(1)) is equal to
Q. If
f
′
(
2
)
=
6
,
f
′
(
1
)
=
4
,
, then
h
→
0
lim
f
(
h
−
h
2
+
1
)
−
f
(
1
)
f
(
2
h
+
2
+
h
2
)
−
f
(
2
)
is equal to
1856
195
Bihar CECE
Bihar CECE 2014
Report Error
A
3
B
−
2
3
C
2
3
D
Does not exist
Solution:
h
→
0
lim
f
(
h
−
h
2
+
1
)
−
f
(
1
)
f
(
2
h
+
2
+
h
2
)
−
f
(
2
)
h
→
0
lim
{
f
′
(
h
−
h
2
+
1
)}
(
1
−
2
h
)
−
0
{
f
′
(
2
h
+
2
+
h
2
)}
(
2
+
2
h
)
−
0
(using L Hospital?s rule)
=
f
′
(
1
)
.1
f
′
(
2
)
.2
=
4
×
1
6
×
2
=
4
12
=
3