Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If f:[1,∞ )→ [2,∞ ] is given by f(x)=x+(1/x), then f-1(x) is equal to
Q. If
f
:
[
1
,
∞
)
→
[
2
,
∞
]
is given by
f
(
x
)
=
x
+
x
1
​
,
then
f
−
1
(
x
)
is equal to
1722
193
Bihar CECE
Bihar CECE 2010
Report Error
A
2
x
+
x
2
−
4
​
​
B
1
+
x
2
x
​
C
2
x
−
x
2
−
4
​
​
D
1
+
x
−
4
​
Solution:
We have,
f
(
x
)
=
x
x
1
​
let
f
(
x
)
=
y
=
x
+
x
1
​
⇒
x
y
=
x
2
+
1
⇒
x
2
−
y
x
+
1
=
0
⇒
x
=
2
y
±
y
2
−
4
​
​
=
f
−
1
(
y
)
⇒
f
−
1
(
x
)
=
2
x
±
x
2
−
4
​
​
⇒
f
−
1
(
x
)
=
2
x
+
x
2
−
4
​
​
(neglecting
−
v
e
as
x
>
1
)