Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $ f:[1,\infty )\to [2,\infty ] $ is given by $ f(x)=x+\frac{1}{x}, $ then $ {{f}^{-1}}(x) $ is equal to

Bihar CECEBihar CECE 2010

Solution:

We have, $ f(x)=x\frac{1}{x} $
let $ f(x)=y=x+\frac{1}{x} $
$ \Rightarrow $ $ xy={{x}^{2}}+1 $
$ \Rightarrow $ $ {{x}^{2}}-yx+1=0 $
$ \Rightarrow $ $ x=\frac{y\pm \sqrt{{{y}^{2}}-4}}{2}={{f}^{-1}}(y) $
$ \Rightarrow $ $ {{f}^{-1}}(x)=\frac{x\pm \sqrt{{{x}^{2}}-4}}{2} $
$ \Rightarrow $ $ {{f}^{-1}}(x)=\frac{x+\sqrt{{{x}^{2}}-4}}{2} $
(neglecting $ -ve $ as $ x>1 $ )