Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If f :[1, ∞) arrow[√2, ∞] be a function defined by f(x)=√x2-2 x+3 and g be the inverse function of f then derivative of g(f2(x)) at x=3 is
Q. If
f
:
[
1
,
∞
)
→
[
2
,
∞
]
be a function defined by
f
(
x
)
=
x
2
−
2
x
+
3
and
g
be the inverse function of
f
then derivative of
g
(
f
2
(
x
)
)
at
x
=
3
is
2254
105
Continuity and Differentiability
Report Error
A
34
6
B
6
34
C
34
24
D
34
12
Solution:
g
(
f
2
(
x
)
)
=
g
(
x
2
−
2
x
+
3
)
Now,
d
x
d
(
g
(
x
2
−
2
x
+
3
)
)
=
g
′
(
x
2
−
2
x
+
3
)
(
2
x
−
2
)
∴
d
x
d
(
g
(
f
2
(
x
)
)
)
∣
∣
x
=
3
=
g
′
(
6
)
⋅
4
=
4
g
′
(
6
)
Now,
g
′
(
6
)
=
f
′
(
1
+
34
)
1
f
′
(
x
)
=
2
(
x
−
1
)
2
+
2
2
(
x
−
1
)
⇒
f
′
(
1
+
34
)
=
6
34
∴
g
′
(
6
)
=
34
6
⇒
4
g
′
(
6
)
=
34
24