We have, x4+x2+1=x4+x2+x2−x2+1 =x4+2x2+1−x2=(x2+1)2−(x)2 =(x2+x+1)(x2−x+1)
Now, x4+x2+1x3−2x2+3x−4=x2+x+1Ax+B+x2−x+1Cx+D ⇒x3−2x2+3x−4=(Ax+B) (x2−x+1)+(Cx+D)(x2+x+1) ⇒x3−2x2+3x−4=(A+C)x3 +x2(B−A+C+D)+x(A−B+C+D)+(B+D)
Comparing of all like terms A+C=1…(i) B−A+C+D=−2 A−B+C+D=3 B+D=−4…(ii)
Adding Eqs. (i) and (ii), we get A+B+C+D=1+(−4)=−3