Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If f(1)=1, f(2 n)=f(n) and f(2 n+1)= f(n) 2-2 for n=1,2,3, ldots, then the value of f(1)+f(2)+ ldots+f(25) is
Q. If
f
(
1
)
=
1
,
f
(
2
n
)
=
f
(
n
)
and
f
(
2
n
+
1
)
=
{
f
(
n
)
}
2
−
2
for
n
=
1
,
2
,
3
,
…
, then the value of
f
(
1
)
+
f
(
2
)
+
…
+
f
(
25
)
is
2520
222
KEAM
KEAM 2015
Relations and Functions
Report Error
A
1
B
-15
C
-17
D
-1
E
13
Solution:
Given that,
f
(
1
)
=
1
,
f
(
2
n
)
=
f
(
n
)
,
f
(
2
n
+
1
)
=
{
f
(
n
)
}
2
−
2
Now,
f
(
2
)
=
f
(
2
×
1
)
=
f
(
1
)
=
1
f
(
3
)
=
f
(
2
×
1
+
1
)
=
{
f
(
1
)
}
2
−
2
=
1
−
2
=
−
1
f
(
4
)
=
f
(
2
×
2
)
=
f
(
2
)
=
1
,
f
(
5
)
=
f
(
2
×
2
+
1
)
=
{
f
(
2
)
}
2
−
2
=
1
−
2
=
−
1
and so on
Now,
f
(
1
)
+
f
(
2
)
+
…
+
f
(
25
)
=
1
+
1
−
1
+
1
−
1
+
…
+
(
−
1
)
=
1