Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If f ''(0)=k, k≠0, then the value of displaystyle limx → 0 (2f (x)-3f (2x)+f (4x)/x2) is
Q. If
f
′′
(
0
)
=
k
,
k
=
0
,
then the value of
x
→
0
lim
x
2
2
f
(
x
)
−
3
f
(
2
x
)
+
f
(
4
x
)
is
1540
205
WBJEE
WBJEE 2017
Continuity and Differentiability
Report Error
A
k
14%
B
2
k
25%
C
3
k
54%
D
4
k
7%
Solution:
x
→
0
lim
x
2
2
f
(
x
)
−
3
f
(
2
x
)
+
f
(
4
x
)
=
x
→
0
lim
2
x
2
f
′
(
x
)
−
3
f
′
(
2
x
)
⋅
2
+
f
′
(
4
x
)
⋅
4
=
x
→
0
lim
x
f
′
(
x
)
−
3
f
′
(
2
x
)
+
2
f
′
(
4
x
)
=
x
→
0
lim
1
f
′′
(
x
)
−
3
f
′′
(
2
x
)
⋅
2
+
2
f
′′
(
4
x
)
⋅
4
=
x
→
0
lim
f
′′
(
x
)
−
6
f
′′
(
2
x
)
+
8
f
′′
(
4
x
)
=
f
′′
(
0
)
−
6
f
′′
(
0
)
+
8
f
′′
(
0
)
=
k
−
6
k
+
8
k
[
∵
f
′′
(
0
)
=
k
]
=
3
k