Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If ey + xy = e, the ordered pair ((dy/dx), (d2y/dx2)) at x = 0 is equal to :
Q. If
e
y
+
x
y
=
e
, the ordered pair
(
d
x
d
y
,
d
x
2
d
2
y
)
at x = 0 is equal to :
3760
193
JEE Main
JEE Main 2019
Continuity and Differentiability
Report Error
A
(
−
e
1
,
e
2
1
)
29%
B
(
e
1
,
e
2
1
)
32%
C
(
e
1
,
−
e
2
1
)
29%
D
(
−
e
1
,
−
e
2
1
)
9%
Solution:
e
y
=
x
y
=
e
differentiate w.r.t. x
e
y
d
x
d
y
+
x
d
x
d
y
+
y
=
0
d
x
d
y
(
x
+
e
y
)
=
−
y
,
d
x
d
y
=
−
e
1
again differentiate w.r.t. x
e
y
.
d
x
2
d
2
y
+
d
x
d
y
.
e
y
.
d
x
d
y
+
x
.
d
x
2
d
2
y
+
d
x
d
y
+
d
x
d
y
=
0
(
x
+
e
y
)
d
x
2
d
2
y
+
(
d
x
d
y
)
2
.
e
y
+
2
d
x
d
y
=
0
e
d
x
2
d
2
y
+
e
2
1
+
2
(
−
e
1
)
=
0
∴
d
x
2
d
2
y
=
e
2
1