We have, e[(sin2x+sin4x+sin6x+...∞)ln2] =e(1−sin2xsin2x)ln2=etan2x⋅ln2 ∴exp[(sin2x+sin4x+sin6x+...∞)ln2]=etan2x⋅ln2
It satisfies the given equation is y2−9y+8 . (y−1)(y−8)=0 ⇒y=1,8
If y=1=etan2x⋅ln2 ⇒e0=etan2x⋅ln2 ⇒0=tan2x⋅ln2 ⇒tan2x=0, but x∈(0,2π),∴ neglecting x=0
If y=8=etan2x⋅ln2 ⇒23=etan2x⋅ln2
Taking ln both sides we get, 3=tan2x⇒tanx=±3 ⇒tanx=tan(±3π) ∴x=3π as, 0<x<2π
Then, cosx+sinxcosx =21+2321 =3+11=23−1 ∴2a−1=23−1⇒a=3