Q.
If equations log128x+log125y=5 and logy125−logx128=1 is satisfied by ordered pairs (x1, y1) and (x2,y2), then find the value of log21(log10x1x2y1y2).
71
123
Continuity and Differentiability
Report Error
Answer: 1
Solution:
Let log128x and log125y=b ∴a+b=5⇒b=5−a and b1−a1=1⇒aba−b=1⇒a−b=ab ⇒a−(5−a)=a(5−a)⇒a2−3a−5=0 ∴a1+a2=3 ⇒log128x1+log128x2=3⇒x1x2=(128)3=221 Θb=5−a ∴b1+b2=10−(a1+a2)=7 ⇒log125(y1y2)=7⇒y1y2=521 ∴x1x2y1y2=1021 ⇒log10(x2y1y2)=21 ⇒log21(log10x1x2y1y2)=1